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Curves in space and in the plane

Curves in space

1. Contact of curves: We remind the reader that we say that two functions f, g : R→
R have contact of order k at a point x0 if at x0 they have the same value, and the
same derivatives of order up to k. A similar definition holds for space curves, on
condition that they are expressed, locally, in the same affine coordinates.

(a) What is the order of contact of the horizontal x axis with the graph of the
function f : R → R : x 7→ f(x) = x4? Find a parabola which has quadratic
contact (i.e. contact of order 2) with the graph of f at the point (x, y) = (1, 1)
and give a suitable plot.

(b) Consider the circle (x− 1)2 + y2 = 1 and the 1-parameter family of ellipses(
x− a
a

)2

+
(y
b

)2
= 1,

where a = 3b. Find the value of the semi-axis a such that the two curves have
2nd order contact at the point (x, y) = (0, 0) and give a suitable plot.

(c) Verify, from the definition of contact, that the tangent parabola y = κ(s)x2/2
and the tangent circle x2 +(y−R(s))2 = R(s)2 to a curve at a point ρ(s) where
the curvature does not vanish indeed have contact of order 2. Here, the radius
is the inverse of the curvature, R(s) = 1/κ(s), and (x, y) are affine coordinates
with respect to the affine basis (ρ(s), t(s),b(s)) of the tangent plane at the
point.

2. The Viviani curve: This is the curve obtained as the intersection of a sphere with
a cylinder that is tangent to it from inside; in detail, it the section of the surfaces:

x2 + y2 + z2 = R2 and
(
x− R

2

)2

+ y2 =

(
R

2

)2

.

(Give a plot of these, preferably using some software.)

Find a parametrization of this curve as follows: first, for the cylinder, use the
parametrization x(t) = (R/2) + (R/2) cos(t), y(t) = (R/2) sin(t), z = z (a simple
translation of cylindrical coordinates.) Now substitute these into the equation of
the sphere and find z by suitable use of trigonometric identities.
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Show that we have a regular curve parametrization of a closed curve, except it is
not 1:1 with its image, since there is a single point of self-intersection. Which point
is this?

3. Bézier curves: In graphic design software (e.g. Adobe Illustrator, CorelDRAW etc)
simple curves are used which have polynomial coordinates and can be stacked up
to create more complicated curves. We use them as motivation for the following
curves in space:

A linear Bézier curve is the first-order curve r(t) = (1 − t)v0 + tv1, where v0 6= v1

are two points in space. Obviously, r(0) = v0, r(1) = v1 and ṙ(0) = v1 − v0.

A quadratic Bézier curve uses three affinely independent points:

r(t) = (1− t) [(1− t)v0 + tv1] + t [(1− t)v1 + tv2] =

= (1− t)2v0 + 2t(1− t)v1 + t2v2.

Clearly, r(0) = v0 and r(1) = v2. Find the velocity vectors at t = 0 and t = 1
and show that the curve lies in the convex hull of the three points, in other words
lies completely in the interior of the triangle they define, and is hence a plane
curve. Explain how this curve could be continued from its end point with another
quadratic curve, so that the velocity function is continuous.

4. We are given a regular curve parametrization in space

r(t) =

 x(t)
ax(t) + b
z(t)

 , a 6= 0.

Show that this curve has zero torsion and that it is therefore a plane curve, and
find the plane containing it. Give a second, more direct proof that it is planar, by
a suitable change of variables.

5. The evolute of a regular curve parametrization is defined as the curve obtained as
the locus of the centres of the tangent circles ρ(s) + 1

κ(s)
n(s). Show that for the

helix r(t) = R cos(ωt) i+R sin(ωt) j+ vtk (R,ω, v > 0), the evoliute is again a helix.

Find a condition so that this evolute lies on the same cylinder containing the
original helix.

6. Show that the Frenet-Serre equations can be written in matrix form, by defining
3× 3 matrices

Φ(s) = [t(s)|n(s)|b(s)], Ω =

 0 −κ(s) 0
κ(s) 0 −σ(s)

0 σ(s) 0

 ,
as the system of ODEs

d

ds
Φ(s) = Φ(s)Ω.

For a general skew-symmetric matrix

Ω =

 0 ω1 ω2

−ω1 0 ω3

−ω2 −ω3 0

 ,
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show how a vector ω can be defined, so that for a vector v ∈ R3,

Ωv = ω × v.

Finally, show that a suitable vector function ω(s) can be defined (the so-called
Darboux vector)so that the Frenet-Serret equations can be written in the form:

d

ds
t(s) = ω × t,

d

ds
n(s) = ω × n,

d

ds
b(s) = ω × b

(the same ω(s) for all three equations!)

7. (a) Show that the helix

r(θ) =

 vθ
cos θ
sin θ

 ,
where v > 0, lies on the cylinder {y2 + z2 = 1} ⊂ R3 and give its natural
length parametrization. Find the Frenet frame, and the curvature function
κ(s). Hence, give the tangent plane and a parametrization of the tangent
circle at an arbitrary point ρ(s0) of the helix.
Show that the two parts of the helix {ρ(s), s > s0} and {ρ(s), s < s0} lie in
opposite half-spaces whose boundary is the tangent plane at ρ(s0).

(b) Find the value of the speed v so that the centre of each tangent circle lies
on the cylinder containing the helix. Finally, compute the torsion from its
definition from the Frenet-Serret equations

8. Show that is h1 : (a, b)→ R and h2 : (a, b)→ R are C2 functions on the nonempty
interval (a, b) ⊂ R, then the parametrization

(a, b)→ R3 : x 7→ r(x) = x i + h1(x) j + h2(x)k

is regular. Explain why the plane x = c, for c ∈ (a, b), intersects the curve in a
unique point.

Show that, conversely, if every plane x =const. intersects a regular curve γ in
at most one point and does so trasversely (non-tangentially), then we can define
functions h1, h2 as above, such that the curve admiuts a parametrization with
parameter an interval of the x axis.

9. In this problem, we shall analyze the question of whether a curve can be defined
as the intersection of two surfaces. This more traditional viewpoint is in gact quite
problematic, as we shall see.

Let us assume that we have two "equations" in R3:

f1(x, y, z) = 0, f2(x, y, z) = 0.

We assume that the set of solutions is non-empty. Here f1 and f2 are smooth scalar
functions.
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Consider the Jacobian 2×3matrix of first-order derivatives (the derivative), at each
point of this non-empty set of solutions:[

∂f1
∂x

∂f1
∂y

∂f1
∂z

∂f2
∂x

∂f2
∂y

∂f2
∂z

]
.

Show that if the determinant of a 2×2 square sub-matrix is non-zero at a point, say
for the sake of argument the first two columns, then functions g1, g2 are defined
locally on some interval, and such that the parametrization z 7→ (g1(z), g2(z), z)
gives a curve which is locally this set of solutions. In other words, the intersection
of the surfaces is locally a curve (why can we in fact refer to surfaces in this case?)
Explain why this condition is equivalent to the linear independence of the gradient
vectors of the two functions at the point. Finally, find an equation for the velocity
field of the intersection curve, based on the above.

Curves in the plane

We consider regular curve parametrizations in the plane R2:

γ : I → R2, t 7→ γ(t) = r(t) = x(t) i + y(t) j, with
dr

dt
6= 0 ∀t.

The natural (length) parametrization ρ(s) = r(t(s)) exists, in principle, and hence dρ
ds

=
dr
dt
/
∥∥dr
dt

∥∥. We always have the normal vector field defined by

n(s) = J
dρ

ds
, where J =

[
0 −1
1 0

]
is the rotation matrix by angle π/2 in the positive sense. In terms of this nar, the
curvature is then defined by the relation d2ρ

ds2
= κ(s)n(s). Now it can be positive, zero, or

negative.
We also have the relation between the rate of change of the angle of the tangent vector

and the curvature:

κ(s) =
dθ

ds
(s) hence: ∆θ[s0, s1] =

∫ s1

s0

κ(s) ds,

where we denote by ∆θ[s0, s1] the change of angle on the interval.
We recall that the natural parametrization is usually impossible to find explicitly,

though we know it exists, since we rarely have the inverse function t(s), even when we
manage to find the function s(t).

10. Show, based on the above, that the curvature function can be computed directly
from the original, non-natural parametrization, as follows:

κ(t) =
d2r
dt2
· J dr

dt∥∥dr
dt

∥∥3 .

11. Give formulae for the centre C(t) and the radius R(t) of the tangent circle at a
point r(t).
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12. Let us apply the above for spiral curves in the plane.

(a) It is common for a spiral to be given in polar form: we have, for example, the
Archimedes spiral, r = aθ and the exponential spiral r = aebθ, for parameters
a, b 6= 0. Here, r is as expected the length r, r = ‖r‖, but careful: the "angle"
θ is meant to vary in R+ and not, as we are used, on an inetrval of length 2π.
We shall work on the spiral of Archimedes, for a = 1. Show that the curve
parametrization is given by:

r(t) =

[
t cos t
t sin t

]
, t ≥ 0.

Compute the length function s(t) and give its graph. We assume, without
proof, that it is not possible to find an explicit form for the inverse function
t(s).

(b) Therefore, compute the curvature function κ(t) from the given parametrization
and show that it is monotone in {t ≥ 0}.

(c) Find the centre and radius of the tangent circle to the spiral at t = 4 and give
a parametrization for it. With the help of software, give a drawing of the spiral
and the circle and notice that, for t > 4, the spiral lies in the exterior of the
circle. Why do you think that is?

13. (a) Give a careful sketch of the regular C1 curve in the plane whose curvature
function with respect to the natural parametrization is:

κ(s) =


1, 0 < s < π
3, π < s < 4π/3,
−3, 4π/3 < s < 5π/3

3, 5π/3 < s < 2π

Note that the curvature is undefined at the endpoints of these intervals. Is
this curve closed?

(b) Give a sketch of the curvature function of the C2 planar curve shown. Also
draw carefully the tangent circle at the marked point.

14. Suppose we have a regular smooth closed curve in the plane, in other word γ :
[a, b] → R2, with dr

dt
6= 0 and r(a) = r(b) and such that dr

dt
(a) = dr

dt
(b) and which is

nowehere zero, r(t) 6= 0 for all t.
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Consider times t0 where the norm ‖r(t0)‖ is minimal. Explain why such times must
exist. Is t0 unique? Give som,e suitable examples to explain. Then, show that the
velocity vector dr

dt
(t0) is orthogonal to r(t0) at each such time.

15. The ellipse: Give a regular parametrization r(t), t ∈ (0, 2π) for the ellipse

x2

a2
+
y2

b2
= 1, where a > b > 0

(use a variation of the usual polar coordinates.) Compute, from the formula you
have derived before, the curvature function κ(t) and identify the points of minimum
and maximum curvature.

Derive the curve of the centres of the tangent planes and, using graphing software,
give a drwaing of this curve. This curve is not regular, in general (why?) and is
called the evolute of the ellipse.

EK, 28/12/2019
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