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We give a number of topological necessary conditions for the achievement of control dynamics more general
than a single, asymptotically stable equilibrium point. In part, the results are based, as are the familiar results
of Brockett and Coron, on simple considerations of Algebraic Topology. Since our setting is more global,
though, we can go further with these tools and derive more elaborate necessary conditions. As a second simple
technique, we also make use of the existence of Lyapunov functions to derive some conditions based on the
implied homotopy between the control dynamics and the gradient flow of the Lyapunov function.
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1 Introduction

Suppose a smooth feedback control has been found so that the controlled dynamics have an
asymptotically stable attractor at some point x in state space. Then local Lyapunov functions
exist for the dynamics; these functions must all have a unique minimum at the point x, but
are otherwise arbitrary. On a compact level set of any such Lyapunov function, the controlled
dynamics point inwards, in other words in the direction of the negative of the gradient of the
Lyapunov function. As maps to the unit sphere, the two vector fields thus have the same degree.
But the degree of the negative gradient vector field is known —it is exactly (−1)n 6= 0. Hence
the map of the controlled dynamics, restricted to a level set, to the sphere must be onto. This
means roughly that all control directions must be available near a point that is to be stabilized
by control. In control theory, this is known as the Brockett condition, but such simple degree
results were widely known before (Krasnosel’skii’s name is mentioned in conjunction with that
of Brockett.)

Such degree-theoretic arguments have been used for some time in topology and were eventually
adopted by control theorists to derive a number of related necessary conditions for design of
controlled dynamics using continuous feedback.

In this paper, we give an account of this theory that has two distinguishing features: first, there
is really no reason to limit ourselves to local results: a global theory is straightforward to obtain.
Secondly, we point out that such necessary conditions are in some fundamental sense of limited
value; this is because they involve maps from manifolds to spheres of the same dimension. By
the Hopf theory, homotopy equivalence classes of such maps are completely classified by a single
integer (traditionally called the degree, but better interpreted in terms of homology groups.)

Several comments are in order: generalizations of the Brockett necessary condition have been
obtained by Coron and others. These suffer to some extent by the problem mentioned above, but
have helped clarify the fact that surjectivity is not enough: the vector field cannot ‘twist’ too
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much either (examples use the degree k maps ż = zk as part of a control system decomposition.)
Moreover, extensions to the case of dynamic feedback have been derived.

Perhaps more importantly, many systems cannot be stabilized using continuous feedback, but
can be easily stabilized with discontinuous feedback. The discontinuity is rather mild: it is
usually limited to a ‘thin’ subset of state space. Recent work of Sontag, Clarke, Subbotin and
others has led to a theory of discontinuous feedback controls and a methodology for obtaining
nonsmooth Lyapunov functions. Now it is possible to interpret this theory in a hamiltonian con-
text: The discontinuities correspond to jumps between locally nonsingularly projected lagrangian
levels. This way of examining possibly discontinuous feedback controls is conceptually easier to
understand and is in step with the philosophy of the book Kappos (2007) which is to give, as
far as is possible, geometric accounts of analytical points.

We begin by giving an outline of the algebraic topological machinery needed for a discussion of
necessary conditions. Here, we depart from the practice of delegating mathematical background
to an appendix, because we believe that this theory is quite accessible and elegant.

A collection of global necessary conditions is then given, directly based on the topological
results. Essentially, it is argued that if certain dynamics are achieved, then index-theoretic
conditions can be deduced by counting the equilibrium points and their stability (Euler-type
arguments) and degree-theoretic results are obtained by the Hopf theorems using the Gauss
maps of the dynamics and the gradient vector field of Lyapunov functions.

Finally, let us point out that this paper by no means exhausts the theory of necessary conditions
in control design. Much more crucial limitations on achievable control dynamics arise from the
theory of feedback invariant objects, a theory that is developed in the book Kappos (2007).

2 Some Background and Methods from Algebraic Topology

A thumb-nail sketch of a number of concepts and methods from algebraic topology will now be
given. There is no effort to be rigorous, but we do hope to explain enough about the computa-
tional methods so that a non-expert reader can use them in concrete situations.

Algebraic topology is based on a simple principle: attach algebraic objects to topological
spaces that are invariants of the homotopy type of the space. Thus, more precisely we assign
algebraic objects to homotopy equivalence classes of spaces and this assignment is ‘functorial’ in
the sense that maps of spaces induce homomorphisms of the algebraic objects. This already gives
useful tests: since homotopy equivalent spaces have isomorphic algebraic objects, two spaces are
definitely not homotopy equivalent if their algebraic objects are not isomorphic. The bulk of
algebraic topology consists of deriving finer and finer such objects so as to be able to better
distinguish spaces and in making clever use of its basic constructions to aid the analysis of
global aspects of other subjects (such as complex analysis, pdes, geometry etc.)

2.1 Singular homology

The easiest algebraic object we can attach to a space is the graded abelian group H∗(X) called
the singular homology group of X (with integer coefficients.) One can get quite far with
only a vague understanding of what the singular homology measures and the reason is that
powerful and effective methods for the computation of H∗(X) exist. We outline the Mayer-
Vietoris sequence and explain the concept of a long exact sequence of a pair and its relation to
excision.

A graded abelian group G = ⊕Gk is a direct sum of groups Gk, k ∈ Z+, such that the group
addition is ‘component-wise’, in other words we add elements belonging to the same graded
component together. The notation

g = . . .+ g0 + g1 + . . .
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for an element of G, where gk ∈ Gk is therefore unambiguous.
For a topological space, the kth homology group Hk(X; Z) measures in some sense the ‘holes’

of X that are like k spheres Sk (think of a boundary-less space, like a sphere, that does not
actually bound anything itself in X.) The 0th group H0(X) is equal to Z if X is path connected.
(Recall that a 0-sphere is the boundary of an interval, i.e. the union of two points.) There is a
way of defining reduced homology groups H̃k(X) so that H̃0(X) = 0 for a connected space and
so that all higher dimensional groups coincide with the non-reduced ones.

Let us give some examples (we omit the zeroth homology group.) The singular homology of
the circle S1 is H1(S1) ' Z and zero for k > 1. Since π1(S1) = Z also, the homology group
contains the same information as the fundamental group of the circle. Note the difference in
interpretation, though: In the former case (for π1), we are thinking of maps from the circle to
itself, classifed by the number of net encirclements In the latter, we are thinking of a fixed circle
—coinciding in this case with the whole space S1— as the generator of a free abelian group; in
this sense, we can write

H1(S1) = Z[S1] ' Z.

For the sphere Sm of dimension m > 1, Hm(Sm) ' Z is the only nonzero homology group
in positive dimension. Since we also have that the mth homotopy group of an m sphere is
Z, we have not yet obtained anything new, compared with homotopy theory. This is a little
misleading: homotopy is both subtler than homology and far more difficult to compute: we do
not, even today, have a complete list of the homotopy groups of spheres. Moreover, πm+k(Sm)
may very well be nonzero for some k > 0, while Hm+k(Sm) = 0 always.

The ‘coincidence’ is really due to a nontrivial theorem, the Hurewicz isomorphism that
states that homotopy and homology groups are isomorphic at the first level when one, and
hence both, are nontrivial (the abelianization of the possibly nonabelian fundamental group is
to be considered, if this happens at the first level.)

A quick check that homology theory does indeed give something new is to compute the homol-
ogy of the torus T 2. We have that H2(T 2) ' Z even though π2(T 2) = 0! (it may be profitable
to spend a minute or two pondering the difference.)

2.2 The Mayer-Vietoris sequence

Supose a space X is the union of two opne subsets, X = A∪B, with A,B opne and A∩B 6= ∅.
Then there is a long exact sequence involving the homology groups of the three spaces

. . .→ Hk(A ∩B)→ Hk(A)⊕Hk(B)→ Hk(X)→ Hk−1(A ∩B)→ . . . (1)

This gives a surprisingly powerful tool for the computation of homology. Even without knowing
what the maps at each stage are (for which we refer the reader to standard accounts such
as Greenberg and Harper (1981)) the exactness allows the computation in concrete cases, such
as that of the spheres. For this, decompose an m-sphere into two slightly overlapping hemispheres
A and B so that their intersection A∩B is deformable to a sphere of dimension m− 1. We can
start an induction with dimension m = 1 and use the Mayer-Vietoris sequence to obtain

. . .→ Hk(Sm−1)→ Hk(A)⊕Hk(B)→ Hk(Sm)→ Hk−1(Sm−1)→ . . . (2)

yielding, for k = m, and since disks have no homology

. . .→ 0→ 0⊕ 0→ Hm(Sm)→ Z→ 0→ . . . . (3)
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We conclude that Hm(Sm) ' Z, since any exact sequence of the form

0→ C → D → 0

implies that the middle map is one-to-one and onto, i.e. an isomorphism.

2.3 Long exact sequence of a pair and excision

A second very useful method for the computation of homology comes from considering pairs
(X,A), where A ⊂ X is a subspace. One gets the long exact sequence for the pair

. . .→ Hk(A)→ Hk(X)→ Hk(X,A)→ Hk−1(A)→ . . . (4)

where the groups Hk(X,A) are the relative homology groups. Without giving the exact
definition, found in the standard texts, let us mention that in many important cases, these
relative groups are isomorphic to the homology groups of the quotient space X/A (see chapter 3
for the definition.) The long exact sequence for a pair is thus extremely useful for the computation
of the homological Conley index.

As an example, let us show that the quotient Dn/Sn−1 of a closed ball by its bounding sphere
has the homology of the n-sphere Sn. The long exact sequence of the pair (Dn, Sn−1) is

. . .→ Hk(Dn)→ Hk(Dn, Sn−1)→ Hk−1(Sn−1)→ Hk−1(Dn)→ . . . (5)

and so, at k = n, we get

. . .→ 0→ Hk(Dn, Sn−1)→ Z→ 0→ . . . (6)

hence Hk(Dn, Sn−1) ' Hk(Dn/Sn−1) ' Z. Similarly, one finds that, for k 6= n (and nonzero),
Hk(Dn/Sn−1) = 0.

2.4 Maps and homomorphisms

Given a continuous map f : X → Y , there is an induced map in homology, which we shall denote
by H∗(f) or f∗

H∗(f) : H∗(X)→ H∗(Y )

and one checks that homology is a covariant functor from the category Top = ( Top, C0) of
topological spaces and continuous maps to the category Ab= (Ab,Hom) of abelian groups and
homomorphisms between them. Since H∗(X) is graded, the above homomorphism is understood
to mean that it consists of homomorphisms at each level of homology:

Hk(f) : Hk(X)→ Hk(Y )

for all k.
In fact, it would be more precise to say that the functor goes from the category hTop of

homotopy equivalence classes of spaces and homotopic maps to the category Ab, since

Proposition 1. If the maps f and g are homotopic, then the maps in homology coincide: f∗ = g∗.

and
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Proposition 2. If two spaces X and Y are homotopy equivalent and the map f has a homotopy
inverse, then f∗ is an isomorphism and the homology groups of X and Y , H∗(X) and H∗(Y )
are isomorphic.

Corollary 1. If f is a homeomorphism of spaces, then f∗ is an isomorphism.

When the space X is a finite-dimensional manifold, the homology groups Hk(X; Z) are finitely
generated; thus, in this case, the basic structure theorem for finitely generated abelian groups is
applicable.

Theorem 1. Any finitely generated abelian group G decomposes uniquely as the direct sum

G = F ⊕ τ

where the abelian group F is free and the group τ is a torsion subgroup.

In fact, one can describe the torsion group τ is more detail (see, for example, Lang (1971).)
The dimension of the free part of the homology group Hk is called the kth-Betti number,

bk = dimHk(X; Z). The Euler characteristic χ(X) is the alternating sum of the Betti numbers

χ(X) =
∑
k

(−1)kbk.

3 Collections of topological necessary conditions

The definition of certain Gauss maps is helpful in the statement of our results. We shall assume
that Mn = Rn or is an open subset of it.

Definition 1. (1) Suppose the vector field X is nowhere zero in Mn. Then the Gauss map
GX : Mn → Sn−1 is defined by

x 7→ X(x)
|X(x)|

.

(2) Suppose that Nn−1 ⊂ Mn is a submanifold such that the restriction of the vector field
X to N is nowhere zero. Then the Gauss map GX|N : Nn−1 → Sn−1 is obtained by
restricting the Gauss map GX to N . Note that this is a map between two manifolds of
the same dimension, one of which is a sphere.

(3) If the submanifold Nn−1 ⊂ Mn is orientable, we define the Gauss map GN : Nn−1 →
Sn−1 by mapping x ∈ N to the unit normal vector to N at x (where an ‘outward’
direction is fixed by choosing an oriented basis on N and completing it to a basis of Rn

consistent with an orientation of Rn.) Note again that the Gauss map is a map from an
(n− 1) dimensional space to the (n− 1)-sphere.

3.1 Index-Theoretic Necessary Conditions

The topological index of equilibrium points leads to a number of necessary conditions for achiev-
ing dynamics with equilibrium points of given stability. These are global results and are rather
classical; our only novelty is in trying to use as modern an algebraic topological framework as
we can to express them.

If e ∈ Mn is an isolated equilibrium point of the vector field X, take a ball neighborhood U
of e (an open set homeomorphic to a ball) such that e is the only equilibrium of X in U and
its boundary N = ∂U is a closed submanifold homeomorphic to a sphere. Then the Gauss map



October 26, 2009 11:43 International Journal of Control ”TopNec09-IJC class”

6

GX|N gives a map from the sphere Sn−1 to itself

Sn−1 h→ N
GX|N→ Sn−1

where h−1 is the homeomorphism from N to the sphere.
At the level of homology, we thus get a homomorphism ψ = GX|N ◦h from Hn−1(Sn−1) to itself.

Since this group is isomorphic to Z, we get a homomorphism from ZtoZ. Since Z is a principal
ideal domain, such maps are specified by the image of the generator, say α ∈ Hn−1(Sn−1). If,
say, ψ(α) = kα, then k is the topological index of the equilibrium e.1 It does not depend on
the precise U chosen.

The classical theorem of Hopf describes maps from the sphere to itself.

Theorem 2. Hopf’s Classification Theorem: Homotopy equivalence classes of maps from
Sn−1 to itself are in a one-to-one correspondence with the integers. For each integer k, the class
of maps corresponding to it is called the class of maps of degree k.

For a hyperbolic equilibrium point of stability index k, the topological index (or degree) is
equal to (−1)n−k. Degree k maps are easily obtained from the degenerate equilibria at the origin
of the system in complex form: ż = zk, for k 6= 0.

The Hopf classification of maps from the sphere to itself has a crucial generalization to maps
of an arbitrary compact manifold of dimension n− 1 to a sphere of dimension n− 1 (see White-
head, Whitehead (1978), p.244)

Theorem 3 (Hopf-Whitney). The homotopy equivalence classes of maps of an (n − 1)-
dimensional compact manifold Nn−1 to the sphere Sn−1 are in one-to-one correspondence with
the elements of the cohomology group Hn−1(Nn−1; Z).

Corollary 2. If N is orientable, then the homotopy equivalence classes of maps from Nn−1

to Sn−1 are in one-to-one correspondence with the integers; they are thus again classified by
‘degree.’

This is, of course, because, for any orientable manifold, Hn−1(Nn−1; Z) ' Z. If N is not
orientable, then this group is Z2 and two maps are homotopic iff they have the same mod-2
degree.

The global version of the Hopf index classification result is the following theorem of Poincaré-
Hopf

Theorem 4 (Poincaré-Hopf). (1) Suppose Wn ⊂ Rn is a compact subset with nonempty
interior such that its boundary is an (n− 1)-dimensional submanifold of Rn. Suppose X
is a vector field on Rn that is nowhere zero on the boundary ∂W and has a finite set of
equilibrium points E. Then

degGX|∂W =
∑

ei∈E∩W
ind ei (7)

(2) Suppose Mn is a compact manifold and X is a vector field on Mn with a finite number
of isolated equilibria. If the boundary of Mn is not empty, we require the vector field to
point inwards at all points. The we have∑

ei∈E
ind ei = (−1)nχ(Mn) (8)

1Confusingly, we are about to give a theorem where the term ‘degree’ is used instead of ‘toplogical index’; the two terms
are equivalent. We shall try use the qualifier ‘topological’ to avoid confusion with other uses of the term index.
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where χ(Mn) is the Euler characteristic of the manifold Mn and E is the set of equilib-
rium points.

In particular, the sum of the topological indices of the equilibria is a topological invariant
of the manifold and thus is independent of the vector field chosen.

(3) Suppose W k is any submanifold of Rn, with 0 ≤ k ≤ n− 1. Consider a tubular neighbor-
hood Nε(W k) so that ∂Nε(W k) is an (n−1)-dimensional submanifold of Rn. If X is any
vector field on Rn such that, on W k, X has a finite number of nondegenerate equilibria,
then

∑
ei∈E∩W

= degGX|Nε(W k) (9)

We have collected different versions of this important theorem to help the reader find the most
convenient form for extracting topological information in applications. Milnor Milnor (1965)
proves versions (2) and (3) and contains a nice discussion.
Remark. The index already contains considerable topological information for the purposes of
extracting necessary conditions. For the case of an asymptotically attracting equilibrium, for
example, the topological index is equal to (−1)n, which means that the generator of Hn−1(Sn−1)
is mapped to itself or its negative, depending on the parity of n. As a result, the Gauss map
is an isomorphism in homology and we conclude that it must then be surjective and injective.
The surjectivity is essentially the Krasnosel’skii-Brockett condition and the injectivity was
derived by Coron. The form we have given is, however, considerably more general.
Remark. It must be emphasized that the index is ‘blind’ to all other dynamical features except
equilibria. Looking at the same point from the other side of the equalities in Theorem 4, the
topological type of the Gauss map in the large (on the boundary of an enclosing set) affects the
configuration of equilibria inside—and fixes the sum of their indices.

A few examples as simple illustrations of the statements of the theorem:
Remark. In Rn, a ball with a vector field pointing inwards at the boundary must contain equi-
libria whose index sum is (−1)n. If these are all hyperbolic, then the options are

• A single attracting equilibrium.
• Two attractors and a one-saddle.
• If n is even, a single repeller is not ruled out; notice that the two cases can be distinguished

using the Conley index, since the exit set differs for the two cases.
• Any other configuration of equilibria with the same net index sum.

Remark. In R3, an embedded torus T 2 gives possible Gauss maps of arbitrary degree, since its
top homology is equal to Z. If, however, we know that there are no enclosed equilibria, as for
example in the case where the torus isolates a limit cycle, then the degree must be zero, by part
(1) of Theorem 4, independently of the stability type of the limit cycle.

This means that the Gauss map is homotopic to the constant map and hence does not have
to be onto (it is not onto in general, for a small enough torus around the limit cycle). Thus, no
necessary condition is derivable in this case, whether the limit cycle is stable or not.
Remark. On the torus T 2 we have, by part (2) of the Theorem, that any vector field must
have total index sum equal to zero, since the Euler characteristic of the torus is zero. Thus,
vector fields that everywhere nonzero are permissible topologically, as are vector fields with one
attractor and one saddle, one repeller and a saddle, one attractor, one repeller and two saddles
etc.



October 26, 2009 11:43 International Journal of Control ”TopNec09-IJC class”

8

3.2 Necessary conditions using the topological index

It should be clear from the examples how to derive necessary conditions for achieving global
dynamics from the index theorems.

Suppose given a Morse specification of gradient type, M = (E, h0), with Morse-lyapunov
functions F(M). In the state space manifold, any choice of an oriented hypersurface that avoids
|E| has a Gauss map degree fixed by the sum of the indices of the enclosed ‘equilibria’. If this is
non-zero, this implies that there must exist control sections such that the controlled dynamics
give a Gauss map with the desired property. In particular, if the index sum is equal to plus
or minus one, then the Gauss map is onto. Let us remark that the conditions obtained can
iether be used locally to check, for example, local stabilizability by requiring the map to have
degree (−1)n for an arbitrarily small neighborhood of the equilibrium, or globally , since the
only relevant information is the position and stability of the desired equilibria and hence the
index/degree results hold for any compact hypersurface avoiding |E|.

A more elegant algebraic topological way of checking simultaneously all necessary conditions
is the following (this does not make it easier to check in concrete cases):

We do first the case of local asymptotic stabilizability.
Suppose a control section U ∈ Γ(D) is found that locally stabilizes the origin 0 in some

neighborhood B; it will be helpful to consider the set, for ε > 0,

ΣB = {(x, v) ∈ D|B ; X(x) + v = 0}

and the sequence

B \ {0} graphU−→ B × Rm \ ΣB
ι
↪→ TRn|B \ {0}

G−→ SRn|B
π−→ Sn−1

where graphU(x) = (x, U(x)), ι is the inclusion map, G is the Gauss map and π is the obvious
projection in the trivial local sphere bundle.

Since 0 is an isolated equilibrium of X+U , X+U 6= 0 in B \{0} and the above is well-defined.

3.3 A reinterpretation of Coron’s condition

With the tools we have at our disposal, it is now easy to give a more geometric interpretation
of the necessary condition for local feedback stabilization given in Coron (1990): We start by
noticing that, if B is a ball neighborhood of the equilibrium 0, B\{0} is homotopically equivalent
to Sn−1 (it actually retracts to the sphere). Thus the composed map defined by the above
sequence, call it φ,

φ : B \ {0} → Sn−1

has a well-defined degree, since 0 is asymptotically stable for X + U and this degree is equal to
(−1)n. This means that, at the level of, for example, homology (or homotopy), the generator,
call it α, of Hn−1(Sn−1) ' Z is in the image of φ. In other words, if 0 is LAS, then there is some
local section such that the degree of the above map is defined and the image of the corresponding
homomorphism at the level of homology is the whole of Hn−1(Sn−1). This is essentially Coron’s
result: Consider the commutative diagram

B \ {0} → Sn−1

↓ ↗
D\ΣV

(10)
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where the vertical map is inclusion and the map from DB \ΣB to Sn−1 will be denoted also by
X + U and is given by the composition (x, v) 7→ X(x) + v 7→ G(X(x) + v). We have that

φ∗(Hn−1(B \ {0})) = Hn−1(Sn−1).

Theorem 5 (Coron, 1990). If the system (X,D) is locally asymptotically stabilizable, then

(X + U)∗(Hn−1(DB \ ΣB)) = Hn−1(Sn−1).

3.4 Generalizations

The simple reasoning that led to Coron’s result can be generalized to equilibrium points that
are not attractors, but have a well-defined stability index.

Theorem 6. Let 0 be an equilibrium of the state dynamics X of the control pair (X,D). If
there is a continuous local feedback that yields dynamics X + U with 0 an equilibrium of index
k , 0 ≤ k ≤ n, then

(X + U)∗(Hn−1(DB \ ΣB)) = Hn−1(Sn−1).

Finally, necessary conditions applicable to an arbitrary compact, connected IIS S, isolated
by the set B ⊂ Mn can be given. More explicitly, we assume that there is a local feedback
U : B → D such that X +U has an IIS S, whose dynamical structure is known (for example, S
as a set consists of a number of equilibria and limit cycles and their connecting orbits.) Notice
that X + U 6= 0 in B \ S.
Remark. Endow Mn with a Riemannian metric. There is a function h defined on B \S such that
its gradient vector field ∇h is topologically equivalent to X + U and such that the Gauss maps
of ∇h and XU induce the same homomorphisms on homology, both G∇h and GXU mapping

H∗(V \ S)→ H∗(SMn|V \S).

Now, as we did for the case of local stabilization, we have the map φ defined by the composite
map below

DB\S \ Σ X+v→ TMn \ Σ G→ SMn (11)

which induces the map φ∗ in homology

H∗(DB\S)→ H∗(SMn|B\S).

We now have the result

Theorem 7. If the control pair (X,D) can achieve dynamics with IIS S isolated by the set B,
then the images of the maps φ∗ and G−∇h in H∗(SMn|B\S) coincide.

4 Homotopy equivalence and homotopic results

An elementary, but fundamental result forms the key to an alternative approach to the derivation
of necessary conditions. It concerns the Gauss maps of a gradient vector field of a Lyapunov
function for the dynamics X and the Gauss map of the dynamics on level sets of the Lyapunov
function.
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Theorem 8. Let Vn−1 be a compact regular level set of some Lyapunov function V for the
dynamics X on Mn ⊂ Rn. Then, the Gauss maps GX|V and G−∇V |V os the vector field X and
of the gradient vector field of V with respect to any riemannian metric are homotopy equivalent.

Proof Decompose the tangent space TMn|V into the tangent space of V and the span of the
gradient vector field ∇V . If Xn is the projection of X to the span of ∇V ,we have that Xn is
nowhere zero on V.

Consider the isotopy of vector field

Yt(x) = (1− t)Xn(x) + tX(x), 0 ≤ t ≤ 1.

We have that Y0 = Xn and Y1 = X.
Now notice that this gives an isotopy for the corresponding Gauss maps as well: this is because

Yt(x) 6= 0 on V and for all t. To see this, write Yt as

Yt = Xn + t(X −Xn)

and notice that the vector field X −Xn is orthogonal to Xn, which is everywhere nonzero.
Define the Gauss maps parametrized by t

Gt : Vn−1 → Sn−1, x 7→ Yt(x)
|Yt(x)|

.

Since Yt(x) is everywhere nonzero, this is well defined and gives an isotopy between

G0 =
Xn

|Xn|
=
−∇V
| − ∇V |

= G−∇V

and

G1 =
X

|X|
= GX .

For reference purposes, let us denote the set of homotopy equivalence classes of maps between
two spaces Ω and Ω′ by

[Ω,Ω′]

according to the standard notation. Given a map f : Ω → Ω′, we write [f ] for its equivalence
classs. We thus have, in this notation, that

[GX ] = [G−∇V ], in [Vn−1, Sn−1].

4.1 Relations to the index

Since the spaces involved are of the same dimension and the target space is a sphere, we have,
by the Hopf theory, that these homotopy equivalence classes are classified by degree.

4.2 Limit Cycles

In the case of a limit cycle γ, we saw that the Gauss map always has degree zero. Additional
necessary conditions are obtained by examining the Gauss map in more detail.

Theorem 9. Suppose γ is a limit cycle for the dynamics X on Rn. then
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(1) For any ε > 0, there is a neighborhood Nδ(γ) such that

GX(Nδ(γ)) ⊂ Nε(GX(γ)).

(2) The image GX(γ) is not contained in any hemisphere: in other words, for any hyperplane
P ⊂ Rn, GX(γ) ∩ P 6= ∅. Moreover, for generic P, |GX(γ) ∩ P| is even (here the bars
denote cadinality of a finite set.)

Proof The first part is proved by continuity and the long flow box (see Palis and de Melo (1982).)
The second part is by contradiction: suppose there exists a hyperplane Pa = {v ∈ Rn ; a(v) =

0}, for some a ∈ (Rn)∗ and is such that GX(γ) ∩ Pa = ∅. Since any hyperplane separates Sn−1

into two parts, we must have that a(GX(x)) is of uniform sign, say negative, for all x ∈ γ.
Choose a basis b1, . . . , bn of Rn such that a is the dual basis vector of b1, i.e. a(b1) = 1 and

a(bi) = 0 for all i 6= 1. Write x1, . . . , xn for the coordinates in this basis.

Claim. The function V (x) = 1
2x

2
1 is a Lyapunov function for X in some open neighhborhood of

γ.

This is shown by computing dV
dt |γ . We have

dV

dt
= (x1, 0, . . . , 0) · γ̇

and, since GX = X
|X| , this is just a(X) < 0.

The claim now establishes a contradiction that proves the theorem, since GX(γ) is a closed
curve. The last part also follows from this fact and an elementary transversality argument.

Theorem 9 says roughly that, even though the image of the Gauss map of a limt cycle is ‘thin,’
still it must curve sufficiently in the target sphere so as to intersect all possible hyperplanes.

As for the Lyapunov level sets near a limit cycle, we have

Theorem 10. Suppose γ is a stable limit cycle for some controlled dynamics. then, on each
level set of a Lyapunov function near γ, each direction (i.e. element of the unit sphere) appears
at least twice, in other words, for each v ∈ Sn−1,

|G−1
−∇V (v)| ≥ 2.

(The proof is a basic topolgical facts about tori and is omitted.) Thus, even though the Gauss
map of the gradient vector field of Lyapunov functions is of degree zero on any level (as it should
be by the Poincaré-Hopf theorem 4), it covers the unit sphere at least twice.

We see, therefore, that members of the same homotopy equivalence class of maps can have
widely different Gauss images. The trick, as far as control is concerned, is to find a representative
arising from a control section (see Kappos (2007).)

5 Summary

We have presented ways of deriving collections of necessary conditions for achieving dynamics of
a given type and we also pointed out the limitations of such topological conditions (due to the
simplicity of the Hopf theory of maps to a sphere.) The basic aim of any analysis is, of course,
to arrive at constructive methodologies. In the treatment of this subject in Kappos (2007), we
find that conditions that are both necessary and sufficient can be found for achieving dynamics
in a certain class. In this light, the fundamental source of necessary conditions is the class of
control-transverse sections and the resulting feedback-invariant dynamics.
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