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Background knowledge

The third year course in Classical Differential Geometry comes after several core course
in the first two years, and is to some extent based on them. This first assignment goes
over some of the prerequisites from these subjects. More specifically, we are assuming
a good background in Linear Algebra, Calculus and Analytic Geometry.

It is assumed that basic competence on the techniques of CDG will be developed by
the student through simple computational exercises, some found in the standard texts,
and others made up by the student. The exercises below go a bit further, aiming at a
deeper and more geometrical understanding. At several points, you are asked to provide
graphs or pictures as part of your answers, so make sure you have access to suitable
graphing software.

Geometry will take place in Euclidean space Rn, most often just in R3, the set of all
triples of real numbers, and where the inner product will be the usual scalar product: if
u = (x1, y1, z1) and v = (x2, y2, z2) are elements of R3, their inner product is

u · v = x1x2 + y1y2 + z1z2.

Most of the time, we shall consider the standard basis of R3, consisiting of the triples
i = (1, 0, 0), j = (0, 1, 0) and k = (0, 0, 1) and we shall write a point r = (x, y, z) of space
as a column vector:

r = x i + y j + z k =

 x
y
z

 .
The basis ( i, j, k) is orthonormal with respect to the above inner product.
Careful: if we select a different basis B = {b1,b2,b3} of R3 (not necessarily orthonormal),
then the same point will of course have different coordinates

r = ub1 + v b2 + w b3 =

 u
v
w


B

.

1. Show that the following vectors
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give a basis of R4. Are they of the same, or the opposite orientation as the standard
basis of R4, (e1, e2, e3, e4)? Find the 4-dimensional volume that they define, and
explain why it is an integer. State a suitable generalization of this result.

Finally, express the standard, scalar inner product in R4 with respect to this basis,
by defining a suitable 4× 4 matrix.

2. In Euclidean space R3 we are given the vectors

b1 = (1, 3,−1), b2 = (0, 1, 1), b3 = (1, 1, 2).

(a) Show that they give a basis B = {b1,b2,b3} of R3.

(b) Find the coordinates of the vector v = (−3, 7, 1) with respect to this basis.

(c) Apply the Gram-Schmidt procedure to the ordered set (b1,b2,b3) to find an
orthonormal basis E = (e1, e2, e3) and find the coordinates of v with respect
to this E .

(d) Find the orthogonal projection of b2 onto the plane span(b1,b3).

3. Moving frames: Let f : D → E be a C1 function, where D, E are open, nonempty
subsets of Rn, and which is 1:1, onto, and with a C1 inverse f−1 : E → D.
The derivative Df(x) at each point of D is given by a n × n matrix of first-order
partial derivatives. Since we have that f−1(f(x)) = x, differentiating, we have
that the derivative matrix is invertible, with inverse (DF (x)))−1 = Df−1(y(x)),
where y = f(x). in one dimension, this gives the well-known relation between the
derivative of a function and the derivative of its inveres, df−1

dy
(y0) = 1/ df

dx
(x0) (where

y0 = f(x0)).

It is convenient to consider the Cartesian products D × Rn and E × Rn, so that
we can refer to vectors in each vector space {x} ×Rn and {y} ×Rn (traditionally
regarded as translated copies of Rn to the points x and y respectively, for each
choice of points x and y.) Show that at each point of the set E a basis of Rn is
defined by the n columns of the derivative matrix. Since we have a basis at each
point, and this point moves, we say that we get a moving basis of Rn.

The familiar polar coordinates in the plane are worth a second look, as they provide
one of the simplest examples of the difference between local and global inverse functions.
The key is in the definition of angle, a tricky but very useful concept in many areas of
mathematics.

4. Polar coordinates: Consider the open half-plane

D = {(r, θ) ∈ R2 : r > 0}

and define a mapping

φ : D → R2 : (r, θ) 7→ (r cos(θ), r sin(θ)).

(a) Show that the condition of the Inverese Function Theorem holds at each point
of D and hence, for each (r0, θ0) ∈ D there is a neighborhood U (e.g. an open
disk), such that φ gives a 1:1, onto map to the image φ(U), and there is a local
inverse function, in other words a local change of variables.
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Give the complete image of φ, φ(D) (the set of all its values.) Also describe the
image of each horizontal half-line {(r, θ) ∈ D : θ = θ0} and of each vertical
line {(r, θ) ∈ D : r = r0}, and draw some typical such sets. If (x0, y0) 6= (0, 0),
find its inverse image, φ−1(x0, y0).
Therefore, explain why we do not have a change of variables in all of the half-
plane D and give reasons why we have to constrain the angle θ to an interval
of total width 2π (e.g. 0 < θ < 2π).

(b) Give the images of the standard basis of the Euclidean plane R2, (1, 0), (0, 1)
under the derivative map to get the moving frame, as in the previous exercise.
Give some indicative pictures at selected points.

5. Give the matrix A of the linear map p 7→ p′ which represents differentiation of
polynomials of degree at most n with respect to the basis B = {1, x, x2, . . . , xn}.
Check that A2 represents taking the derivative twice, and show that An+1 = 0 (we
say A is nilpotent.)

6. Give at least two distinct proofs of the inequality of Cauchy-Schwartz and, using
it, give a proof of the triangle inequality in Rn

‖u + v‖ ≤ ‖u‖+ ‖v‖.

Do not forget to give conditions for equality to hold.

7. The exterior product in R3.

Historically, the definition of the exterior product in space is motivated by the desire
to measure the total flow of a vector field through a surface in space. This physical
problem is usually presented in a Vector Analysis course.

(a) One of the standard definitions of the exterior product is:

u× v = ‖u‖ ‖v‖ sin θ n.

Geometrically, it gives the area of the parallelogram in space, whose sides
are the two vectors, but includes a binormal vector n, whose presence is
unmotivated (but see definition of flow below). Explain why every single one of
the four terms on the right (i.e. ‖u‖, ‖v‖, sin θ,n), presupposes the existence
of the inner product in R3. We wonder at this point whether we can define
the exterior product as a measure of area, but without reference to any inner
product!

(b) We claim that indeed the value of the exterior product depends only on the
(oriented) area, and not on the length of the individual vectors, or on the angle
between them! This should be clear from the following properties:

(a) (ku)× (v/k) = u× v, ∀k 6= 0

(b) (u + αv)× v = u× v.

Make sure you know how they are proved and what they mean geometrically.
In fact, find the set of all pairs of vectors which give exactly the same value for
their exterior product as the original pair u and v.
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(c) A better way to proceed to a definition independent of the inner product is the
following: we shall accept that the area of the square defined by two of the
basis vectors of the standard basis is equal to one, and the orientations are
such that the resulting triple maintains the orientation of the basis ( i, j, k).
This means that we define the elementary exterior products

i× j = k, j× k = i, k× i = j,

and extend the definition to the exterior product of two general vectors by im-
posing the geometrically obvious properties of bilinearity and skew-symmetry
(the first means that the product is linear in each factor, and the second
that reversing the order reverses the resulting vector of the exterior product,
v × u = −u× v.)
Show that this gives the well-known alternative definition of exterior product
in terms of coordinates with respect to the standard basis. We thus claim that
this definition is preferable to the first one we gave above, since it does not
assume any inner product.

(d) Recollect the definition of the flow of a vector field F through an oriented
surface Σ: ∫∫

Σ

F · n dS,

where the orientation of the syrface is given by the unit normal field n. Explain
why it is reasonable for the flow through an infinitesimal surface element to be
given by F · n dS and relate it to the above definitions of the external product.

8. Linearization: We are given the function f(x, y) = (x3 − xy2,−y3 + xy). Compute
its derivative Df as a 2× 2 matrix. Show that f is locally invertible near the point
(x0, y0) = (2, 2).

Compare the exact value of the difference f(2.2, 1.8)− f(2, 2) with the approximate
one, provided by the linearization:

f(x, y)− f(x0, y0) ' Df(x0, y0)

[
x− x0

y − y0

]
,

where, of course, here (x, y) = (2.2, 1.8) and (x0, y0) = (2, 2).

It is important to understand that on each nontrivial vector space, there are infinitely
many different ways of defining an inner product, besides the standard, scalar one. We
write the general inner product 〈u,v〉.

9. Give full proofs of the following results:

(a) The eigenvalues of a real square matrix are all real numbers.

(b) A symmetric real matrix Q is called positive definite if for each vector v 6= 0,
the value of the quadratic forn q(v) = v ·Qv is strictly positive.

(c) The following are equivalent conditions: (i) all its eigenvalues are positive and
(ii) all the principal minors are positive (this is Sylvester’s criterion.)
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Now show that for any such positive definite Q, an inner product is defined in Rn

by:
< u,v >Q= u ·Qv,

where · is the familiar scalar product.

Finally, show that the matrix

Q =

 2 −1 0
−1 1 1

0 1 3


is positive definite and find all vectors v orthogonal to u = (1, 2, 1) with respect to
this inner product.

10. (a) Show that the function of two vectors:

〈u,v〉 = 2x1x2 − x1y2 − x2y1 + 3y1y2 + 2y1z2 + 2z1y2 + 5z1z2

defines an inner product in R3 (where we took u = (x1, y1, z1) and v =
(x2, y2, z2).

(b) Give the norm function ‖ · ‖ which is defined from this inner product. Hence,
find the norm of the vector (3, 3,−2) and give the equation of the plane orthog-
onal to this vector. How can you describe the set of all vectors in R3 which
have norm one with respect to this IP?

11. (a) Compute the detrminant of the matrix 1 a a2

1 b b2

1 c c2


where a, b, c ∈ R and therefore show that if a, b, c are distinct real numbers,
the three row vectors give a basis of R3.

(b) Give ten distinct vectors in R3 suhc that any selection of three out of the ten
gives a basis if R3.

12. We are given the smooth function f : R2 → R2 : (x, y) 7→ (z, w) = (x2 − y2, 2xy).

(a) Show that near every nonzero point (x, y) 6= (0, 0) it gives a local diffeomor-
phism (or change of variables) and that the moving frame we obtain by map-
ping the standard basis under the derivative map is actually an orthogonal
basis, of the same orientation as the original.

(b) Observe that every pair of opposite nonzero points (x, y) kai (−x,−y) give the
same value of the function and show that, therefore, by limiting the domain
of definition of f to the open upper half plane {y > 0} we have a global
diffeomorphism with its image, in other words, we have a global change of
coordinates. Can you find the analytic form of the inverse function?

(c) Give an adequate geometric explanation for why we cannot have a change
of variables in all of the punctured plane R2 − {0}, despite the fact that the
function is locally invertible (in other words, how can we have a function
f : R2 − {0} → R2 − {0} which is onto and locally 1:1, but is not globally
invertible.)

EK, 27/10/2019
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